Introduction
The Anomaly Detection and Prediction features are Piano Analytics' two time series functionalities powered by data science, seamlessly integrated within Explorer. The Anomaly detection & Prediction functionalities are located under the “AXON analyst” button in the graph type selection. These features are available in all time series graphs within Explorer.
Anomaly detection
Anomalies are detected when our statistical model identifies suspicious variations for a given metric within the context of the analysis.
Example: A large decrease in visits on a Saturday may seem suspicious within the context of a week, however prove to be a perfectly ordinary variation as the scale of a year (decreases in traffic can be observed each weekend).
Anomalies are illustrated on the graph with round symbols overlaid on the time series.
Positive anomalies will be shown in green:
Negative anomalies will show up in red:
Prediction
The prediction functionality will provide you with the expected future values of a given metric based on your historical data:
- In hourly granularity, we forecast the following 24 hours after the last hour of the analysis
- In daily granularity, we forecast the following 30 days after the last day of the analysis
- In weekly granularity, we forecast the following 12 weeks after the last week of the analysis
- In monthly granularity, we forecast the following 12 months after the last month of the analysis
Availability
Analyses
Graph granularities
Anomaly Detection & Prediction functionalities are available on all graph granularities: hour, day, week, month. When analyzing the current day, the actual line will be overlaid with the day's forecast, giving you hourly targets for the day.
Data requirements
A minimum of 2 weeks of historical data (with less than 30% of the historical data being zeros) is necessary to identify anomalies and to provide forecasts on hourly and daily granularities. A minimum of 2 years worth of historical data is necessary (with less than 30% of the historical data being zeros) for weekly and monthly anomaly detections & predictions. If your site is new, you will have to wait until enough historical data is collected for our model to satisfy goodness-of-fit assumptions. Consequently, an explicit error message is shown until you have enough data. For optimal accuracy in our model, we recommend at least 8 weeks and 3 years of data, respectively.
Metrics
The Anomaly detection & Prediction features are available for all metrics (absolute and ratios).
Basic concepts
Anomaly
When the anomaly option is selected, a “tolerance” area is shown on the graph. We expect the line to remain within the boundaries of this area. Any data point of the line outside this zone will be flagged as an anomaly.
Trend
The trend illustrates macro fluctuations in your data over time. The trend is illustrated using a dashed line.
Baseline
The Baseline illustrates how the metric would have evolved without the intervention of external factors. The baseline is illustrated using a dotted line.
Forecast
The forecast is a prediction based on your historical data. The forecasted values are shown on the graph using a green dotted line. The forecast has its own level of accuracy, which we illustrate using the light green area around the predicted line.
Algorithm sensitivity
The detection sensitivity will affect the algorithm's tolerance area. Three levels of sensitivity are available: low, medium, high. With a low level of sensitivity, the algorithm will be more tolerant, resulting in a larger tolerance area, and fewer alerts. On the contrary, a high level of sensitivity will result in a small tolerance area around the line, and thus more alerts will be identified. The detection sensitivity can be changed on the graph options.
Low
Medium
High
Technical Information and FAQ
Technical Information
The Anomaly Detection & Prediction features are in-house, custom-built data science models founded on a hybridization of time series decomposition models and clustering methods. The basic models have been tweaked, improved using millions of data points, and adapted to web analytics data.
FAQ
Does the model compensate for known events such as Christmas or Black Friday?
The Anomaly Detection & Prediction models do not adapt for known recurrent events such as Christmas or Black Friday. Therefore, fluctuations in your data taking place on those dates will be treated similarly to fluctuations on any other day.
The trend doesn’t seem to fit my data properly, is this normal?
The trend reflects macro fluctuations in your data. It is possible your analysis timeframe is too small to show long term fluctuations in your dataset. Due to this phenomenon, the trend can appear to be distant from the rest of your data. By increasing your analysis timeframe you will see the trend illustrates macro fluctuations in your data.